Impact of Enzymatic Degradation of the Endothelial Glycocalyx on Vascular Permeability in an Awake Hamster Model

نویسندگان

  • S. A. Landsverk
  • A. G. Tsai
  • P. Cabrales
  • M. Intaglietta
چکیده

Background. The inside of the endothelium is covered by a glycocalyx layer, and enzymatic degradation of this layer induces vascular leakage ex vivo. We hypothesized that enzymatic degrading of the glycocalyx in an in vivo, whole body model, would induce plasma leakage and affect the microcirculation. Methods. Golden Syrian hamsters were divided into an enzyme (hyaluronidase) and a control group. Mean arterial pressure (MAP), heart rate (HR), hematocrit (Hct), base excess (BE), and plasma volume were obtained before, 45 and 120 min after enzyme/saline treatment. Plasma volume was evaluated by the distribution volume of indocyanine green and the microcirculation by functional capillary density (FCD). The enzymatic effect was determined by measuring plasma levels of hyaluronan (HA). Results. There were no differences in MAP, HR, Hct, and BE between the two groups. Enzyme treatment did not induce changes in plasma volume but reduced FCD. There was a 50-100-fold increase in plasma HA, but no relationship was found between HA levels and plasma volume or FCD. Conclusion. Vascular leakage was not confirmed in an in vivo, whole body model after degradation of the endothelial glycocalyx. The microcirculation was affected, but no relationship between plasma levels of HA and FCD was seen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro.

Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, whereas inflammation causes shedding of the layer. To track the end...

متن کامل

Response to Research Commentary The Recovery Time Course of the Endothelial Cell Glycocalyx In Vivo and Its Implications In Vitro

Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, whereas inflammation causes shedding of the layer. To track the end...

متن کامل

Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts.

Atrial natriuretic peptide (ANP) is reported to enhance vascular permeability in vivo. Our aim was to evaluate the impact of ANP on coronary extravasation of fluids and macromolecules and on the integrity of the endothelial glycocalyx. Isolated guinea pig hearts (n = 6/group) were perfused with Krebs-Henseleit buffer in a Langendorff mode. A 6% hydroxyethyl starch (HES) solution was infused int...

متن کامل

Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle

The endothelial glycocalyx is a complex network of glycoproteins, proteoglycans, and glycosaminoglycans; it lines the vascular endothelial cells facing the lumen of blood vessels forming the endothelial glycocalyx layer (EGL). This study aims to investigate the microvascular hemodynamics implications of the EGL by quantifying changes in blood flow hydrodynamics post-enzymatic degradation of the...

متن کامل

Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx.

A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacterial analogue to heparanase, is known to attack the gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012